Australian Childhood Dementia Research Funding Report 2024

A Childhood Dementia Initiative report

Childhood Dementia Initiative (2024). Australian Childhood Dementia Research Funding Report 2024. www.childhooddementia.org/getasset/2WX39O Released March 2024 Sydney, Australia. © Childhood Dementia Initiative 2024

Acknowledgments

In the spirit of reconciliation, Childhood Dementia Initiative acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.

The Childhood Dementia Initiative would like to thank the Childhood Dementia Initiative Scientific and Medical Advisory Committee for their valuable contributions to the development of this report:

- Tiffany Boughtwood, Australian Genomics (Chair)
- Professor John Christodoulou AM, Murdoch Children's Research Institute and the University of Melbourne
- Professor Michelle Farrar, Sydney Children's Hospital and the University of NSW
- Professor Kim Hemsley, Flinders Health and Medical Research Institute, Flinders University
- Associate Professor Leszek Lisowski, Children's Medical Research Institute and the University of Sydney
- Professor Peter Schofield AO, Neuroscience Research Australia (NeuRA)
- Dr Nicholas Smith, Women's and Children's Health Network and University of Adelaide

This report was written by Dr Kristina Elvidge (Head of Research) and Megan Maack (Director and CEO), Childhood Dementia Initiative. Thank you to Isobel Lindley for editing and designing the report.

Background

A recent study¹ showed that childhood dementia is caused by more than 145 rare genetic

disorders which affect 1 in every 2900 births. Modelling in this paper estimated that in Australia:

- two babies are born every week who will develop childhood dementia
- childhood dementia is so severe, that half of these children will die before they reach the age of 10 years
- someone dies from childhood dementia every 4 days.

Not only are the lives of children with dementia short, they are extremely difficult.²³ As a result of the progressive cognitive decline, children lose communication skills and experience changes in eating, motor function, sleep, and behaviour resulting in complex medical issues and needs. Parents watch their child(ren) suffer increasing levels of confusion, distress, unhappiness, and pain. Childhood dementia is also associated with significant carer stress, anxiety, and challenges in care. Psychosocial challenges are numerous and encompass physical, economic, social, emotional and psychological implications.²⁴

Treatments and cures are needed to both improve length and quality of life for children with dementia and their families. However there has been a long-standing disparity in allocation of funding to childhood dementia research. As a result, there is a lack of childhood dementia clinical trial options and few new treatments gaining regulatory approval globally.⁵

The level of childhood dementia research funding was compared to childhood cancer, another severe group of paediatric diseases which cause a similar number of deaths each year in Australia¹. It is worth noting the comparative prevalence of cancer and dementia in children aged 0-14 (Figure 1). In Australia approximately 1.4 times more children are undergoing treatment for cancer at any one time than the number living with dementia, and this was taken into account in our analysis.

Thanks to intensive medical research in recent decades, death rates from cancer almost halved between 1997 and 2017 in children aged 0–14⁶ in Australia and in high-income countries, more than 80% of children with cancer are cured (Figure 2).⁷ In contrast, childhood dementia has had no notable overall improvement in survival. We endeavour to learn from the progress in childhood cancer and achieve similarly impactful improvements in length and quality of life for children with dementia.

Figure 1: Children O-14 years in Australia living with childhood dementia and childhood cancer.

Figure 2: Children O-14 years in Australia who will survive dementia and childhood cancer.

Until now, each of the 145 genetic conditions that cause childhood dementia have been considered and viewed individually, with little awareness, research or support. Childhood Dementia Initiative was founded in 2020 to bring the conditions that cause childhood dementia together and challenge this siloed approach in order to enable sustainable global health solutions for children with dementia.

Collectively addressing childhood dementia is a world-first approach that is providing opportunities for greater scale, impact and acceleration of therapy development. It is unlocking opportunities to work across multiple childhood dementia disorders at once, develop platforms for therapy development and put in place research infrastructure such as biobanks, data collections and collaboration

opportunities. Importantly, the awareness raised of these disorders is attracting researchers from other fields including adult dementia to work in this area due to the untapped opportunity to make progress for not only childhood dementia but other neurodegenerative diseases.

Australian funding analysis

Childhood dementia research funding overall

We analysed the funding allocated to childhood dementia through the Federal Government's National Health and Medical Research Council (NHMRC) and Medical Research Future Fund (MRFF) from 2017 to 2023.

In total, 35 projects have been funded by the NHMRC and MRFF into conditions that cause childhood dementia totalling \$23.4 million (Table 1 and Supplementary Tables 1 and 2). This includes research into individual childhood dementia conditions, for example Sanfilippo syndrome and Rett syndrome and four projects researching multiple childhood dementia conditions concurrently. It was challenging to decide which projects to include because many were not explicitly researching dementia in childhood, but we believe we have reached a reasonable and conservative estimate based on expert advice. Where a project is broader than just childhood dementia, a proportion was calculated and the rationale for this calculation can be found in the Appendix.

The analysis revealed:

- Childhood cancer received 4.6 times more funding than childhood dementia per patient (Figure 3).
- On average \$22 million dollars has been invested in childhood cancer per year over the past 7 years compared to \$3.3 million per year for childhood dementia.

		Estimated patient		
	Total	population (Australia)	\$ per patient	Ratio
Childhood dementia	\$23,392,611	1394*	\$16,781	1
Childhood cancer (0-19)	\$153,748,380	1984^	\$77,494	4.6

Table 1: NHMRC and MRFF funding from 2017 to 2023

*Elvidge et al., 2023, defined as those diagnosed with a childhood dementia disorder before the age of 18. ^Childhood Cancer prevalence was calculated assuming an average treatment duration of 2 years. Prevalence equals the number diagnosed in 2020 and 2021 aged 0-19 (2,253) minus the number of deaths in those years (271). Australian Institute of Health and Welfare 2022. Cancer data in Australia. Canberra: Accessed: July 2022; <u>https://www.aihw.gov.au/reports/cancer/cancer-data-in-australia</u>

Figure 3: Australian Government research funding from 2017 to 2023

Research funding subgroup analysis

We noted in our analysis that 20 of the 35 projects (50% of research funding) for childhood dementia was for mitochondrial diseases. Mitochondrial disease accounts for approximately 9% of the childhood dementia patient population¹.

In 2023 there was a \$15 million MRFF grant awarded that was necessary to implement mitochondrial donation in Australia, after the law was changed in 2022 to allow the use of this technology. Mitochondrial disease can affect many systems and organs in the body and symptoms can start at any age. It is estimated that approximately 2% of people diagnosed with mitochondrial disease have childhood dementia¹. Mitochondrial donation is welcomed and will help some families affected by childhood dementia caused by mitochondrial disease avoid passing it down to future generations. This is important because IVF techniques available to couples at high risk of many other types of childhood dementia, are not applicable to mitochondrial disease caused by changes to mitochondrial DNA. Like all childhood dementia disorders, mitochondrial disease currently has no treatments, the biology is complex, and is difficult to diagnose, therefore, investment into mitochondrial disease research must continue. However, this funding skewed the funding analysis. To get a sense of the disparity in the remaining 91% of the childhood dementia population, an additional calculation was made excluding mitochondrial disease.

Research into subtypes of childhood dementia that affect 91% of the childhood dementia patient population is relatively neglected. Excluding mitochondrial disease from the patient population estimate and research funding amount, it was revealed that there was only \$9,256 of research funding per patient and this is **8 fold less than childhood cancer.**

Discussion

Research funding in Australia is lacking and does not align to need

This is made particularly apparent when comparing research funding per patient for childhood cancer and childhood dementia. **Over the period 2017 to 2023, childhood dementia received 4.6 times less funding than childhood cancer per patient**.

This is despite great unmet need for medical research. Death rates for children with cancer have almost halved, steadily and dramatically declining so much that, between 2008 and 2017, the 5-year survival after a cancer diagnosis for children was 87%.⁶ By contrast, **childhood dementia is terminal for all children and has had no notable overall improvement in survival in recent decades** underscoring the great unmet need for investment in medical research.

It is anticipated that this lack of research funding for childhood dementia is replicated around the world. This is due to the lack of awareness of this group of conditions which have traditionally been seen as individually rare conditions, rather than grouped together based on their similar clinical presentation. This historic and ongoing lack of research funding is contributing to a global lack of clinical trials and subsequent extremely limited treatment options for children with dementia.

However, recent analysis indicates that research inequity is particularly severe in Australia. ${\sf A}$

2024 analysis of clinical trials globally showed that, per patient, there were 24-fold fewer clinical trials recruiting children with dementia than children with cancer in December 2023. In Australia the disparity was even greater with a 43 fold difference in clinical trials for children with dementia than children with cancer. **Of 54 clinical trials recruiting patients globally, only 2 of these trials were listed as recruiting in Australia, and no new trials started in Australia in 2023.**⁵

Opportunities to transform treatment of childhood dementia

In a world first, in 2022, the Australian Government announced a dedicated research funding call for childhood dementia. \$2.7 million was allocated to 5 childhood dementia research projects in 2023 through the Medical Research Future Fund. This enabled the first projects that are studying multiple childhood dementia disorders concurrently. This is expected to give unique new insights into childhood dementia, demonstrate the economies of scale that can be achieved and accelerate the development of therapies. This is a step in the right direction, but this was a one off opportunity.

Clinical trial results released by companies^{8–12} and published in peer reviewed journals,^{13–16} have demonstrated positive results, especially in children treated early in their disease course. So, it is not that the development of therapies for this group of diseases is too difficult, or not possible. There is now an opportunity to transform treatment of childhood dementia, but **to capitalise on these advances, large scale, coordinated and collaborative research funding is needed.**

In conclusion, advances in genomics and development of therapeutics in recent decades have enabled effective treatments to be within reach for childhood dementia, however **increased research funding for childhood dementia is needed to address the historic inequity in attention to childhood dementias, and to progress and deliver effective treatments to patients.**

References

- 1. Elvidge KL, Christodoulou J, Farrar MA, et al. The collective burden of childhood dementia: a scoping review. *Brain J Neurol.* 2023;146(11):4446-4455. doi:10.1093/brain/awad242
- Nevin SM, McGill BC, Kelada L, et al. The psychosocial impact of childhood dementia on children and their parents: a systematic review. *Orphanet J Rare Dis.* 2023;18(1):277. doi:10.1186/s13023-023-02859-3
- Djafar JV, Johnson AM, Elvidge KL, Farrar MA. Childhood Dementia: A Collective Clinical Approach to Advance Therapeutic Development and Care. *Pediatr Neurol.* 2023;139:76-85. doi:10.1016/j.pediatrneurol.2022.11.015
- 4. Nunn K, Williams K, Ouvrier R. The Australian Childhood Dementia Study. *Eur Child Adolesc Psychiatry*. 2002;11(2):63-70. doi:10.1007/s007870200012
- 5. Childhood Dementia Initiative (2024). *Childhood Dementia Global Clinical Trial Landscape Analysis.* www.childhooddementia.org/getasset/LZPRVX
- Australian Institute of Health and Welfare (2022). Australia's children, Cancer incidence and survival. Accessed December 2, 2022. <u>https://www.aihw.gov.au/reports/children-youth/australias-children/contents/health/cancer-incidence-survival</u>
- World Health Organisation (WHO) (2021). *Childhood cancer*. Accessed December 12, 2023. <u>https://www.who.int/news-room/fact-sheets/detail/cancer-in-children</u>
- Ultragenyx Announces Data Demonstrating Treatment with UX111 Results in Significant Reduction in Heparan Sulfate Exposure in Cerebrospinal Fluid Correlated with Improved Long-term Cognitive Function in Patients with Sanfilippo Syndrome Type A (MPS IIIA)–Ultragenyx Pharmaceutical Inc. Accessed February 12, 2024.

https://ir.ultragenyx.com/news-releases/news-release-details/ultragenyx-announces-data-demonst rating-treatment-ux111-results

- Initial Clinical Data of First Pediatric CLN2 Patient Dosed with RGX-181 Presented at SSIEM Annual Symposium I Regenxbio Inc. Accessed February 12, 2024. <u>https://regenxbio.gcs-web.com/news-releases/news-release-details/initial-clinical-data-first-pediatr</u> ic-cln2-patient-dosed-rgx-181/
- 10. Additional Positive Interim Data from Phase I/II Trial of REGENXBIO'S RGX-111 for the Treatment of Severe MPS I Presented at WORLDSymposium[™] I Regenxbio Inc. Accessed February 12, 2024. <u>https://ir.regenxbio.com/news-releases/news-release-details/additional-positive-interim-data-phas</u> <u>e-iii-trial-regenxbios-rgx/</u>
- Taysha Gene Therapies Reports Initial Clinical Data from First Adult Rett Syndrome Patient Dosed in REVEAL Phase 1/2 Trial and Provides Corporate Update with Second Quarter 2023 Financial Results I Taysha Gene Therapies. Accessed February 13, 2024.

childhood dementia

https://ir.tayshagtx.com/news-releases/news-release-details/taysha-gene-therapies-reports-initialclinical-data-first-adult/

- Inc R. REGENXBIO Announces Pivotal Trial of RGX-121 for the Treatment of MPS II Achieves Primary Endpoint. Accessed February 13, 2024. <u>https://www.prnewswire.com/news-releases/regenxbio-announces-pivotal-trial-of-rgx-121-for-the-tr</u> <u>eatment-of-mps-ii-achieves-primary-endpoint-302056283.html</u>
- Muschol N, Koehn A, von Cossel K, et al. A phase I/II study on intracerebroventricular tralesinidase alfa in patients with Sanfilippo syndrome type B. *J Clin Invest*. 2023;133(2):e165076. doi:10.1172/JCl165076
- 14. Bremova-Ertl T, Ramaswami U, Brands M, et al. Trial of N-Acetyl-I-Leucine in Niemann-Pick Disease Type C. N Engl J Med. 2024;390(5):421-431. doi:10.1056/NEJM0a2310151
- Seo JH, Kosuga M, Hamazaki T, Shintaku H, Okuyama T. Intracerebroventricular enzyme replacement therapy in patients with neuronopathic mucopolysaccharidosis type II: Final report of 5-year results from a Japanese open-label phase 1/2 study. *Mol Genet Metab.* 2023;140(4):107709. doi:10.1016/j.ymgme.2023.107709
- 16. Fumagalli F, Calbi V, Natali Sora MG, et al. Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: long-term results from a non-randomised, open-label, phase 1/2 trial and expanded access. *Lancet Lond Engl.* 2022;399(10322):372-383. doi:10.1016/S0140-6736(21)02017-1

Appendix

Supplementary Table 1: Childhood dementia related projects funded by the MRFF 2017- 2023

				Chief	Contract				
MRFF Initiative	Grant Opportunity	Organisation	Project Name	Investigator A	Start Date	Total Funding	Proportion	\$ allocated	Type of CD
	2019 Rare Cancers,		Ataxia-telangiectasia: treating						
Clinical Trials	Rare Diseases and	The University of	mitochondrial dysfunction with a	Professor David					
Activity	Unmet Need - General	Queensland	novel form of anaplerosis	Coman	1/6/2020	\$2,459,666.00	100%	\$2,459,666	ataxia telangiectasia
									mitochondrial disease and other
Clinician	2017 Next Generation	University of	Improving diagnosis, treatment and	Professor					neurological diseases due to impaired
Researchers	Clinical Researchers	Sydney	prevention of mitochondrial disease		1/1/2019	\$257,388.25	2%	\$5 663	mitochondrial function(1)
Researchers	clinical Nesearchers	Syuney	Development of a personalised	carolyn Sde	1/1/2015	Ş237,300.23	270	\$3,003	
Emerging			medicine approach for Australian						
Priorities and	2018 Accelerated	Sanfilippo	children with Sanfilippo Syndrome						
Consumer	Research - Sanfilippo	Children's	(MPS III) utilising patient specific						
	Syndrome	Foundation (NSW)	neuronal cell models	Not applicable	18/02/2019	\$2,000,000.00	100%	\$2.000.000	Sanfilippo syndrome
Emerging	2019 Accelerated				-,-,	, ,,		1 //	ELECTION -
Priorities and	Research -								
Consumer	Leukodystrophy	Murdoch Children's							
Driven Research	Flagship	Research Institute	Massimo's Mission	Not applicable	1/4/2019	\$3,000,000.00	100%	\$3,000,000	leukodystrophy
Emerging									
Priorities and	2021 Chronic		Early, novel and accessible	Professor					
Consumer	Neurological		intervention for children with	Katrina					childhood dementia + autism
Driven Research	Conditions	Monash University	developmental regression	Williams	1/4/2022	\$1,995,974.54	10%	\$199,597	spectrum disorder (2)
			Improving health outcomes by						
Emerging			identifying biomarkers to delineate						
Priorities and	2022 Effective		common mechanistic pathways and	Associate					
Consumer	Treatments and	University of New	to monitor therapeutic effect of	Professor					
Driven Research	Therapies	South Wales	clinical trials in childhood dementia	Michelle Farrar	1/1/2023	\$595 <i>,</i> 955.60	100%	\$595 <i>,</i> 956	childhood dementia - all
Emerging	2022 Effective	University of	RTTomics: Towards developing new	Associate					
Priorities and	Treatments and	Sydney	treatments and therapies for Rett	Professor	1/1/2023	\$595,972.93	100%	\$595,973	Rett syndrome

Consumer	Therapies		syndrome individuals using cortical	Wendy Gold					
Driven Research			brain organoids						
			A new substrate reduction strategy						
Emerging			to treat childhood dementias:						
Priorities and	2022 Effective		Glucosylceramide	Associate					
Consumer	Treatments and	University of	synthase-targeting antisense	Professor					
Driven Research	Therapies	Tasmania	oligonucleotides	Anthony Cook	1/1/2023	\$599,977.30	100%	\$599,977	childhood dementia - multiple
Emerging									
Priorities and	2022 Effective		Developing Nanoparticle Mediated						
Consumer	Treatments and	The University of	Gene Transfer for Childhood	Doctor					
Driven Research	Therapies	Adelaide	Dementia	Nicholas Smith	1/1/2023	\$302,148.00	100%	\$302,148	Sanfilippo syndrome
Emerging			Developing an mRNA-based gene						
Priorities and	2022 Effective		therapy strategy for Niemann-Pick						
Consumer	Treatments and	University of	Disease Type C1: a blueprint to treat	Doctor Ya Hui					
Driven Research	Therapies	Melbourne	childhood dementia	Hung	1/1/2023	\$599,650.36	100%	\$599,650	Niemann pick type C
Emerging			Introducing Mitochondrial Donation						
Priorities and			into Australia: The mitoHOPE						
Consumer	2022 Mitochondrial		(Healthy Outcomes Pilot and	Professor John		\$15,000,000.0			
Driven Research	Donation Pilot Program	Monash University	Evaluation) Program	Carroll	1/6/2023	0	50%	\$7,500,000	Mitochondrial disease (6)
Genomics									
Health Futures			Preventing mitochondrial disease						adult and childhood onset
Mission	2019 Projects	Monash University	using genomics	Not applicable	30/06/2020	\$499,417.00	2%	\$10,987	mitochondrial disease (1)
Genomics									
Health Futures	2020 Genomics Health	Murdoch Children's	Mitochondrial Diagnostic Network	Professor David					adult and childhood onset
Mission	Futures Mission	Research Institute	for Genomics and Omics	Thorburn	1/6/2021	\$2,999,999.66	2%	\$66,000	mitochondrial disease (1)
Stem Cell			Pre-clinical iPSC-neuron screen of	Associate					
Therapies	2022 Stem Cell		repurposed drugs for children with	Professor					
Mission	Therapies	Flinders University	a form of dementia	Cedric Bardy	1/2/2023	\$738,228.02	100%	\$738,228	Sanfilippo syndrome
TOTAL								\$18,673,845	

[14 grants]

Supplementary Table 2: Childhood dementia related projects funded by the NHMRC 2017- 2023

							Proportion	A. H I.	
APP ID	Date Announced	CIA Name	Grant Type	Grant Title	Admin Institution	Total	applicable to CD	\$ allocated to CD	Type of CD
	Ambunccu	CIA Nume	Career		Admin institution		10 00	65	
		Dr David	Development	Systems approaches to understanding mitochondrial					adult and childhood onset
1140851	11/10/2017	Stroud	Fellowships	function and dysfunction in disease	Monash University	\$431,000.00	2%	\$9,482	mitochondrial disease (1)
		Dr David		Systems approaches to understanding the assembly of					adult and childhood onset
1140906	6/12/2017	Stroud	Project Grants	mitochondrial machines	Monash University	\$600,005.00	2%	\$13,200	mitochondrial disease (1)
		A/Pr Daniel	Research		University of				
1154352	13/8/2018	Hatters	Fellowships	Proteostasis mechanics of neurodegenerative diseases	Melbourne	\$649,175	5%	\$32,459	Huntington's disease (4)
		Prof David	Research	Minimising the impact of mitochondrial disease by	Murdoch Childrens				primarily childhood onset
1155244	13/8/2018	Thorburn	Fellowships	discovery and translation	Research Institute	\$860,385	70%	\$602,270	mitochondrial disease (3)
		Prof Michael		Dissecting the functions of accessory subunits in					adult and childhood onset
1164459	12/12/2018	Ryan	Project Grants	mitochondrial complex I	Monash University	\$722,284	2%	\$15,890	mitochondrial disease (1)
				Deciphering the pathogenetics of rare diseases by					
1164479	12/12/2018	Prof David Thorburn	Project Grants	multi-omic approaches: disorders of mitochondrial energy generation as an exemplar	Murdoch Childrens Research Institute	\$1,041,548	70%	\$729 084	primarily childhood onset mitochondrial disease (3)
1104475	12/12/2010					Ş1,041,540	7070	<i>9723,004</i>	
		Prof Michael		Defining molecular pathways for COX2 maturation in				t	adult and childhood onset
1165217	12/12/2018	Ryan	Project Grants	mitochondrial Complex IV Delivering precision diagnosis to patients with	Monash University	\$595,788	2%	\$13,107	mitochondrial disease (1)
				mitochondrial disease: Using digital technologies to					
				enhance the delivery pathway to provide an accurate					
		Prof Carolyn	Partnership	genetic diagnosis for patients with mitochondrial					adult and childhood onset
1179029	6/10/2020	Sue	Projects	disease	University of Sydney	\$1,273,553.50	2%	\$28,018	mitochondrial disease (1)
		A/Pr Daniel		The cascade of consequences in Huntington Disease	University of				
1184166	12/7/2019	Hatters	Ideas Grants	from mutant Httex1 synthesis and aggregation	Melbourne	\$747,700.00	6%	\$44,862	Huntington's disease (4)
		Prof Justin		UNDERSTANDING THE BENEFITS AND LIMITATIONS OF					primarily childhood onset
2000723	15/12/2020	St. John	Ideas Grants	METAPHASE II SPINDLE TRANSFER	University of Adelaide	\$1,629,373	70%	\$1,140,561	mitochondrial disease (3)

		Prof John							primarily childhood onset
2001112	15/12/2020	Carroll	Ideas Grants	Mitigating the risks of mitochondrial donation	Monash University	\$1,063,748	70%	\$744,624	mitochondrial disease (3)
				Developing exon replacement gene therapy to cure					
		Dr Wendy		Rett syndrome: an innovative model for					
2001536	15/12/2020	Gold	Ideas Grants	neurodevelopmental disorders	University of Sydney	\$475,105	100%	\$475,105	Rett syndrome
		Dr David	Investigator	Developing a multi-omics platform for the diagnosis of	University of				adult and childhood onset
2009732	9/14/2021	Stroud	Grants	mitochondrial disease	Melbourne	\$1,570,120.00	2%	\$34,543	mitochondrial disease (1)
		Dr Luke	Investigator	Understanding complex I assembly for better diagnosis					adult and childhood onset
2010149	9/14/2021	Formosa	Grants	and future treatment	Monash University	\$650,740.00	2%	\$14.316	mitochondrial disease (1)
	-, , -	Prof				,,		. ,	
		Aleksandra		Programmable correction of mitochondrial DNA	University of Western				adult and childhood onset
2010332	11/4/2021	Filipovska	Ideas Grants	mutations	Australia	\$760,442.50	2%	\$16,730	mitochondrial disease (1)
		Prof Michael		Molecular mechanisms underlying the pathogenesis of					adult and childhood onset
2010939	11/4/2021	Ryan	Ideas Grants	complex I dysfunction and mitochondrial disease	Monash University	\$1,370,808.00	2%	\$30,158	mitochondrial disease (1)
		D. L.P.							and the second shell diverse diverses in
2019993	14/12/2022	Dr Julia Pagan	Ideas Grants	Tuning mitophagy in mitochondrial diseases	University of Queensland	\$684,080.00	2%	\$1E 0E0	adult and childhood onset mitochondrial disease (1)
2019993	14/12/2022	ragan			Queensianu	\$084,080.00	270	\$13,030	
				Modelling of mitochondrial disease in specific cell					
		Prof David		lineages to understand pathomechanisms and develop	Murdoch Childrens				primarily childhood onset
2021085	14/12/2022	Thorburn	Ideas Grants	effective targeted therapies	Research Institute	\$1,360,059.40	70%	\$952,042	mitochondrial disease (3)
		Lottie	Postgraduate	Improving outcomes for children with complex	Murdoch Childrens				
2022156	17/11/2022	Morison	Scholarships	communication needs	Research Institute	\$99,112.50	50%	\$49,556	Batten Disease (5)
		Dr Ian	Investigator	Hereditary Cerebellar Ataxias: Next-Generation					Hereditary cerebellar ataxias
2026191	15/12/2023	Harding	Grants	Biomarker Discovery on a Global Scale	Monash University	\$1,586,190.00	2%	\$31,714	(7)
		Prof Aleksandra	Investigator	Tackling mitochondrial dysfunction: understanding and	Linivorsity of Wostorn				adult and childhood onset
2026315	15/12/2023	Filipovska	Grants	treating metabolic diseases	Australia	\$2,697,165.00	2%	\$59,338	mitochondrial disease (1)
	13, 12, 2023	i inpovsku	Grands			<i>42,037,</i> 103.00	270		
TOTAL								\$4,766,351	

[21 grants]

Notes for supplementary tables 1 and 2

(1) Mitochondrial disease affects 1 in 4300 people.¹ With an Australian population of 25.69 million, this means 5974 people in Australia. The prevalence of childhood dementia caused by mitochondrial disease is estimated to be 129 in Australia (incidence of 7 per 100,000 births, life expectancy of 6.1 and birth rate of 300,000 per year in Australia).² Since childhood dementia constitutes 2.2% of the mitochondrial disease population, this proportion was applied.
(2) Clinicians estimate that children with dementia would constitute approximately 10% of the patients at the developmental regression clinic

(3) Approximately 70% of patients with childhood onset mitochondrial disease have childhood dementia.²

(4) 5% of Huntington's disease cases have the juvenile form of the disease.³

(5) This project also includes Kleefstra Syndrome which is typically not a childhood dementia disorder so 50% of the amount was allocated

(6) It is estimated that approximately half of the funding relates to preventing childhood dementia and related conditions

(7) Some types of hereditary cerebellar ataxias are known to cause childhood dementia such as SCA7 and SCA17. SCA7 represents 2% of all SCAs⁴ and SCA17 incidence is unknown. Estimate 2% allocation to childhood dementia.

Appendix References

- 1. Gorman GS, Schaefer AM, Ng Y, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. *Ann Neurol.* 2015;77(5):753-759. doi:10.1002/ana.24362
- 2. Elvidge KL, Christodoulou J, Farrar MA, et al. The collective burden of childhood dementia: a scoping review. *Brain J Neurol*. 2023;146(11):4446-4455. doi:10.1093/brain/awad242
- 3. Quarrell O, O'Donovan KL, Bandmann O, Strong M. The Prevalence of Juvenile Huntington's Disease: A Review of the Literature and Meta-Analysis. *PLoS Curr.* 2012;4:e4f8606b742ef3. doi:10.1371/4f8606b742ef3
- 4. La Spada AR. Spinocerebellar Ataxia Type 7. In: Adam MP, Mirzaa GM, Pagon RA, et al., eds. *GeneReviews®*. University of Washington, Seattle; 1993. Accessed August 8, 2022. http://www.ncbi.nlm.nih.gov/books/NBK1256/